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Room-Temperature Testing for High
Critical-Current-Density

Josephson Junctions
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Abstract—This paper demonstrates that room-temperature
resistance measurements can accurately predict the critical
current and normal resistance of high critical-current-density
junctions. We fabricated high critical-current-density ( 200

A/ m2 = 20 kA/cm2) Nb/Al/AlO /Nb Josephson junctions in
cross-bridge Kelvin resistor (CBKR) test structures and mea-
sured their electrical characteristics both at 4.2 K and at room
temperature. We developed a two-dimensional mathematical
model of the CBKR test structure with two resistive wiring layers
in order to characterize the effect of current crowding on the
room-temperature measurements. We then used the model to
remove the effect of current crowding from the room-temperature
measurements and correlated the values of these measurements
to the electrical properties of the junctions at 4.2 K. We also
identified test-structure-design rules that guarantee current
crowding is negligible.

Index Terms—Cross-bridge Kelvin resistors, high critical-cur-
rent-density, Josephson junctions, room-temperature testing, test
structures, tunneling resistance.

I. INTRODUCTION

T HE critical current and normal resistance of
Nb/Al/AlO /Nb Josephson junctions can be pre-

dicted with a room-temperature measurement [1]. This was
demonstrated previously for junctions with a relatively low
critical-current density of 17 A/ m . However, the
product should depend only on the gap voltage and the temper-
ature, so we should be able to use this relationship on high-
junctions even though they have some different processing
and electrical characteristics. This paper demonstrates that the

and of high- ( 200 A/ m ) junctions can also be
predicted by using a room-temperature measurement.

It is important for the large-scale manufacturability of
Josephson junctions to be able to measure their critical currents
and normal resistances quickly and cheaply. Low-tempera-
ture testing is time consuming: each of the dozens of chips
from every wafer must be carefully mounted onto a probe
and loaded into a liquid-helium dewar, and the number of
measurements is limited by available signal pads to a few test
structures per chip. Moreover, it is difficult to probe a wafer
at low temperature without dicing it, thus the wafers cannot
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Fig. 1. Schematic diagram of a CBKR test structure. Current flows in through
I+ in the bottom electrode, through the barrier, and out through the top electrode
(I�). Potential is measured on either side of the barrier using the V+ and V�

leads.

be tested until processing has been completed. On the other
hand, four-point room-temperature measurements can be made
automatically on all test structures across an entire wafer, using
commercial test equipment. Thus the wafers can be measured
during processing: to determine the electrical properties of the
junctions, one simply has to load the wafer into an automated
probe station and wait.

The resistance of a junction can be measured with a simple
cross-bridge kelvin resistor (CBKR) test structure [2] consisting
of a Josephson junction with four leads, two on each side of the
junction, as shown in Fig. 1. Current is passed in the I+ lead,
through the junction, and out the Ilead on the opposite side of
the junction. Since the V+ and V leads are orthogonal to the
flow of current, they provide a good estimate of the potential on
either side of the junction. The resistance of the junction can be
calculated by dividing the potential difference between the V+
and V leads by the current from the I+ to I lead. Without
such a four-point measurement the lead resistance would be im-
possible to distinguish from the resistance of the contact.

The voltage measured on the V+ and Vleads of a CBKR
test structure does not perfectly represent the potential on ei-
ther side of the junction. The imperfection is due to an effect
known as current crowding, in which current deviates from a
direct path through the junction and is free to enter the junction
from all sides, like water in a bathtub entering the drain. The
measured resistance of the test structures is higher than that of
the junction because some of the resistance of the leads is also
being measured. Fig. 2 shows the inhomogeneous current dis-
tribution through one layer of a test structure as calculated using
the model described in this paper.

In the semiconductor industry similar structures are used
to determine the contact resistance between metal wiring
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Fig. 2. Vector plot of the current flow through one of the electrodes of a CBKR
test structure. Current flows in through the current source at one end of the
electrode and out the junction. Note that the current not only flows linearly
into the junction, but also around the junction, creating a small potential drop
from the junction to V+. The sheet resistances of the two layers used in the
calculation are 0.906
= and 2.12
= , and the specific contact resistivity
was 150
=�m . The lead margin was set to be particularly large in order to
allow easy visualization of the current-crowding effect.

layers and semiconducting device layers. The effects of current
crowding in these contacts have been well studied [3]. However,
the results obtained from research on metal-semiconductor
contacts are not directly applicable to CBKR test structures
for Josephson junctions because, in the case of metal-semi-
conductor contacts, the metal layer may be assumed to have
negligible resistance relative to the semiconductor layer,
whereas in the Josephson-junction test structures the wiring
layers have approximately equal resistance.

We developed a mathematical model of the test structure in
two dimensions and solved it numerically to calculate the error
from current crowding. We then manufactured CBKR test struc-
tures with high- Josephson junctions. We measured the resis-
tance of the junctions at room temperature and their electrical
properties at 4.2 K. We corrected the room-temperature mea-
surements using the model and correlated the results to the elec-
trical properties of the junctions at 4.2 K.

II. M ODELING THE TEST STRUCTURE

A. Governing Equations

The CBKR test structure can be accurately modeled using
classical theory. The flow of current in a conductor with no free
charge is governed by the Laplace equation

(1)

We establish the boundary conditions as follows: the edge of
the current source is fixed, while the current drain is grounded.
We also need boundary conditions for the remaining edges of
the test structure. Since current flows through the electrodes but
not out the sides, we can set the normal current equal to zero at

the sides of the conductor. We can also fix a positive potential
at I+ (see Fig. 1) and ground I.

This equation with associated boundary conditions is suffi-
cient to model the potential distribution in three dimensions and
to extract numerically the current from I+ to Iand the potential
difference from V+ to V . However, we can reduce the com-
putational requirements of this model by flattening it to two di-
mensions. This approximation is very good because the poten-
tial drop in the -direction has a negligible effect on the V+ and
V potential for our test structure dimensions and resistivities
[3]. However, in the case of very small contact resistance, large
sheet resistance, thick wiring layers, and small junctions, the
third dimension would become significant.

B. Reduction to Two Dimensions

To reduce the model to two dimensions, we make some as-
sumptions [3]. Each metal layer is treated as a separate two-di-
mensional plane. In the area not directly above or below the
junction, current does not flow up or down out of the leads. Thus
we eliminate the term in (1), so for convenience we introduce
a new operator that differs from
only in that it is not dependent on. In the area of the lead not
directly over the junction, (1) reduces to

(2)

In the areas directly over and under the junction, current flows
out of one layer into the other, so the two-dimensional diver-
gence of current in each layer is nonzero. Thus we must return
to the three-dimensional equation. We rewrite (1) with the new
operator , and substitute with , to
get

where is the film conductivity and is the current density in
the direction. We now integrate along the-axis from the top
of the top layer ( ) to the junction interface ( ). We
assume is constant with respect to, and we let be the
sheet resistance of the layer under consideration. Thus we find

From our three-dimensional boundary conditions, .
Here is the vertical current density through the junction,
which is the potential difference across the junction divided by
the contact resistivity. Thus if we let be the potential immedi-
ately above the junction, be the potential immediately below
the junction, and be the specific contact resistivity, we get

(3)

We can use (2) and (3) to describe any point on the interior of
the electrodes. We fix the potential at the end of one electrode
and ground the opposite end on the other electrode. For the other
edges, we can simplify (2) with the assumption that current does
not flow out the edges of the electrodes.
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C. Solving the Boundary Value Problem

Two-dimensional boundary value problems of this type can
be solved by first discretizing the test structure area into sample
points and then applying a numerical relaxation technique. The
differential equations in the problem are solved on a discrete
grid. The relaxation technique can be described as follows.

First we make a simple initial guess at the potential distri-
bution in the leads. Then, for each point, we adjust its value so
that it satisfies the equations relating it to its neighboring points.
After the value at each point has been adjusted, the new set of
points is closer to the solution than the initial guess. We repeat
this procedure until the values of the points satisfy the equations
relating them to each other to within a given tolerance. If we
assume that the calculated adjustment will not be sufficient, be-
cause the neighboring points themselves will be adjusted in the
next iteration, we can overadjust. This procedure is called suc-
cessive overrelaxation [4] and greatly accelerates convergence.

D. Extracting Measurable Quantities

Once potential as a function of position has been solved for,
the potential difference one would measure with the voltage
leads is simply the difference of the average potential values at
the ends of the V+ and V leads. In order to solve for current,
we return to and choose a cross-sectional area inte-
gral of such that all current passes through that cross section.
In our two-dimensional model, this cross-sectional integral is a
line integral across one of the current leads, or an area integral
across the junction.

The technique as described thus far takesas an input and
gives the measured , the contact resistance. However,
in practice one measures an experimental valueand wants
to know . To find , we iterate the model while varying
until a input that returns the measured is found. For an
initial guess, we take , where is the length of
the junction on a side. This value of would be the solution in
the case of no current crowding. Then, we model the structure
to see how close the output is to . If they disagree, we
multiply by and repeat until the result converges. For
our typical test structures, convergence to less than 1% usually
requires only a few iterations.

E. Generalized Result

It is useful for a designer to determine the error due to cur-
rent crowding without having to perform simulations. Thus we
generalized the results of the model. There are five inputs, the
physical dimension (defined in Fig. 1), , , and the sheet
resistance of the two electrodes and , and one output

, so it is difficult to represent the results graphically. How-
ever, by running the model for a matrix of these parameters, we
identified rules that guarantee negligible current crowding. The
rules are a straightforward extension of the one-resistive-elec-
trode case [3] and simply require that , and ,
and .

For the junctions we fabricated, , and
, and . The model shows that the zero-dimen-

sional model is a good approximation with these parameters,

Fig. 3. Plot of the normal resistanceR of junctions measured at 4.2 K versus
the junction resistanceR of the test structures measured at 300 K. The line is
the identity mapping.

and in fact the two-dimensional model provides only a
correction.

III. EXPERIMENTAL RESULTS

CBKR test structures were fabricated on a 150-mm-diam-
eter wafer using an abbreviated version1 of the Lincoln Lab-
oratory DPARTS (doubly-planarized all-refractory technology
for superconductors) process [5]. The junctions were made of
Nb/Al/AlO /Nb trilayers and had critical current densities of
200 A/ m (20 kA/cm ). All the test structures were measured
at room temperature using a Rucker & Kolls 683A Semi-Au-
tomatic Wafer Prober with a Hewlett-Packard 3478A Multi-
meter. The finite-element analysis model was used to determine

from the measured resistances. Then the wafers were diced,
and junction I-V curves were measured of 11 junctions at 4.2 K
in liquid helium. The I-V curves were recorded digitally, and a
computer program extracted parameters including critical cur-
rent and normal resistance . We then looked for correla-
tions between the room-temperature and 4.2-K results.

In Fig. 3, is plotted versus room-temperature junction re-
sistance . The model was used to correct the values, resulting
in a small improvement in the linear fit. The identity mapping
provides a close approximation to these results, as seen in Fig. 3.
The RMS deviation of the actual normal resistance from the
predicted normal resistance is 0.14, and the correlation co-
efficient is 0.9995. This result can be used to accurately pre-
dict the normal resistance of high-junctions at 4.2 K with a
room-temperature measurement.

is plotted versus the corrected room-temperature resistance
in Fig. 4. Here, the RMS deviation of the actual value from the
predicted is 58 A for the junctions, which range in critical cur-
rent from 32 A to 1992 A. The Pearson’s correlation coef-
ficient is 0.9974. The slope of the least squares fit is 1.9 mV
= 0.68 , where is the gap voltage of niobium (about 2.85
mV)2 . When a linear fit is performed on the five smallest junc-

1The layer of niobium acting as a ground plane and the corresponding layer
of insulation oxide are not necessary for the fabrication of test structures. Thus
those layers were omitted in order to save processing time and cost.

2This is the same value a similar analysis [1] of low-J junctions yields, as
one should expect.
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Fig. 4. Plot of the critical currentI of junctions measured at 4.2 K versus
the inverse of the junction resistance,1=R , of the test structures measured at
300 K. The slope of the linear fit is 1.9 mV, which is0:68 � V and corresponds
to experimental results for low-J junctions.

Fig. 5. Wafer map ofJ in kA/cm extracted from room-temperature
resistance measurements. There is variation from the left to the right of the
wafer of about 20% of the mean.

tions, ranging in critical current from 32A to 120 A, the RMS
deviation is only 6.1 A. Thus we can accurately predict the crit-
ical current of high- junctions with a room-temperature mea-
surement.

Using this correlation between critical current and room-tem-
perature resistance for several dice on the wafer, we can calcu-
late critical current density on the rest of the dice measured only

at room temperature. The wafer map offor this experiment is
shown in Fig. 5. The majority of the critical currents lie within
90% and 120% of the targeted critical-current density. The pat-
tern and detail evident in this map have provided us with impor-
tant clues in determining the source of cross-wafervariation.

IV. CONCLUSION

We have developed a model of room-temperature Josephson-
junction test structures to more accurately extract critical cur-
rents. We have also demonstrated that room-temperature test
structures may be used to determine the critical current of high-
critical-current-density Josephson junctions. Using the room-
temperature measurement technique, we can create wafer maps
of for entire lots of wafers.

Finally, we have presented a general framework that can be
used to design test structures of this type with low inherent mea-
surement error.
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